Cover image for Precision manufacturing
Title:
Precision manufacturing
Personal Author:
Publication Information:
New York, NY : Springer, 2008
Physical Description:
xx, 773 p. : ill. ; 24 cm.
ISBN:
9780387324678
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
PSZ JB 30000010168909 TS176 D67 2008 Open Access Book
Searching...

On Order

Summary

Summary

Precision Manufacturing provides an introduction to precision engineering for manufacturing. With an emphasis on design and performance of precision machinery for manufacturing - machine tool elements and structure, sources of error, precision machining processes and process models sensors for process monitoring and control, metrology, actuators, and machine design.

This book will be of interest to design engineers, quality engineers and manufacturing engineers, academics and those who may or may not have previous experience with precision manufacturing, but want to learn more.


Reviews 1

Choice Review

Dornfeld (Univ. of California, Berkeley) and Lee (Lawrence Berkeley National Laboratory) have written a well-planned, timely addition to the already existing large quantity of published literature on the manufacturing process. The book starts with a historical introduction to the process of manufacturing in general, and machining in particular, and ends with a chapter devoted to environmental issues involved with machining. Between these two are ten other chapters in which practically all the relevant issues are dealt with: machines, measurements, possible errors, and available and potential remedies. To approach the ideals of precision machining, the necessary rethinking related to process planning, the means of achieving the goals, and the possible challenges are presented. Considering the breadth and depth of the material covered, this book of nearly 800 pages appears too short. The references section, containing 560 published articles dealing with every aspect of precision machining, is particularly useful. This reviewer congratulates the authors on their excellent work. Summing Up: Highly recommended. Academic engineering collections; upper-division undergraduates through professionals involved with precision machining. K. Srinagesh University of Massachusetts Dartmouth


Table of Contents

Preface & Acknowledgementsp. xvii
I Introduction to precision manufacturingp. 1
1.1 Precision engineeringp. 1
1.2 Precision manufacturingp. 2
1.3 Competitive drivers of precision manufacturingp. 7
1.4 Historical developments in manufacturingp. 9
1.4.1 Backgroundp. 9
1.4.2 Key driversp. 13
1.4.3 Historical examplesp. 16
1.5 Organization of this bookp. 33
II Machine design for precision manufacturingp. 37
2.1 Background on machine design for manufacturingp. 37
2.2 Philosophy of precision machine designp. 39
2.3 Sources of error - overviewp. 41
III Principles of measurementp. 49
3.1 Definition of terms - accuracy, repeatibility, and resolutionp. 49
3.1.1 Accuracyp. 49
3.1.2 Repeatability (or precision)p. 53
3.1.3 Resolutionp. 54
3.1.4 Probabilistic measure of accuracyp. 55
3.2 Metrology and measurementp. 57
3.3 Abbé's principlep. 64
3.4 Metrology techniquesp. 67
3.4.1 Measurement of dimension and anglep. 67
3.4.2 Measurement of formp. 73
3.4.2.1 Straightnessp. 73
3.4.2.2 Flatnessp. 84
3.4.2.3 Roundnessp. 88
3.4.2.4 Other form errorsp. 99
3.4.3 Measurement of surface roughnessp. 99
3.4.4 Kinematic precisionp. 110
3.5 Subsurface damagep. 112
IV Mechanical errorsp. 121
4.1 Introductionp. 121
4.2 Errors due to machine elements (excluding bearings)p. 123
4.3 Kinematic designp. 128
4.3.1 Connectivityp. 128
4.3.2 Kinematic elementsp. 129
4.3.3 Contact and complex supportp. 133
4.3.4 Summary of kinematic designp. 142
4.4 Structural compliancep. 143
4.4.1 Microscale compliancep. 143
4.4.2 Macroscale compliancep. 145
4.5 Bearings and spindlesp. 153
4.5.1 Bearingsp. 153
4.5.2 Aerostatic bearings and spindlesp. 163
V Thermal errorsp. 167
5.1 Background on the thermal error problemp. 167
5.2 Thermal effects in precision engineeringp. 171
5.3 Determining the effect of temperature other than 20°Cp. 180
5.3.1 Free and constrained bodiesp. 181
5.3.2 Effect of spatial temperature gradientsp. 184
5.3.3 Effect of temperature transients: soak-out time and sinusoidal responsep. 187
5.4 Conductive, convective, and radiative heat transfer parametersp. 193
5.5 Specific heat sources and examples of thermal problemsp. 196
5.6 Environmental control of precision machineryp. 202
5.6.1 Machine enclosuresp. 203
5.6.2 Factory and room enclosuresp. 204
5.6.3 Machine treatment without enclosuresp. 206
5.7 Thermal effects and metrologyp. 208
5.8 Observationsp. 215
VI Error mapping and error budgetsp. 217
6.1 Introductionp. 217
6.2 Error mappingp. 218
6.3 Error budgetp. 232
6.3.1 Definition of error budgetp. 232
6.3.2 Error budget flow chartp. 233
6.3.3 Combinational rules for errorsp. 234
VII Error due to compliance and vibrationp. 239
7.1 Introductionp. 239
7.2 Excitations in machine toolsp. 243
7.3 Weight deformationp. 246
7.4 Cutting force deformationp. 249
7.4.1 Type A deformation: Deformation due to the variation of the cutting forcep. 250
7.4.1.1 Introduction and backgroundp. 250
7.4.1.2 Examples for single edge cuttingp. 254
7.4.1.3 Machine stiffness and directional orientationp. 256
7.4.2 Type B deformation: Deformation due to the variation of the stiffness along the tool pathp. 263
7.4.3 Comparison of the errors from deformation types A and Bp. 267
7.5 Forced vibrationsp. 272
7.6 Self-excited vibrations (chatter)p. 273
7.6.1 Introductionp. 273
7.6.2 Basic stability; effect of structural dynamicsp. 278
7.6.3 Variation of spindle speed and stability lobesp. 288
7.7 Advanced analysisp. 292
VIII Sensors for precision manufacturingp. 295
8.1 Introductionp. 295
8.1.1 The relevance of precision manufacturing and the need for in-process monitoring and controlp. 295
8.1.2 Requirements for sensor technology for precision manufacturingp. 297
8.2 Overview of sensors in manufacturingp. 300
8.2.1 Introductionp. 300
8.2.2 Sensor systems for process monitoringp. 303
8.3 New developments in signal and information processing for tool condition monitoringp. 308
8.3.1 Introductionp. 308
8.3.2 Intelligent sensorsp. 311
8.3.3 Implementation strategiesp. 314
8.3.4 Multisensor approachesp. 316
8.3.5 Sensors for high speed machiningp. 317
8.4 Acoustic emission in manufacturingp. 320
8.4.1 Backgroundp. 320
8.4.2 Acoustic emission sources-diagnosticsp. 322
8.4.3 Acoustic emission sources-process monitoringp. 323
8.4.4 Acoustic emission in machiningp. 325
8.5 Signal processing, feature extraction and sensor fusionp. 334
8.5.1 Introductionp. 334
8.5.2 Intelligent sensor definedp. 337
8.5.3 Sensor fusion definedp. 338
8.5.4 Fusion methodologiesp. 339
8.5.5 Neural networksp. 341
8.6 Applications of signal processing and sensor fusionp. 349
8.6.1 Introductionp. 349
8.6.2 Tool wear detection using time series analysis of acoustic emissionp. 350
8.6.2.1 Time series analysisp. 351
8.6.2.2 Experimental evaluationp. 355
8.7 Sensor integration using neural networks for intelligent tool condition monitoringp. 358
8.7.1 Use of multiple sensorsp. 360
8.7.2 Experimental evaluationp. 363
8.8 The need for engineering models to design and predict the performance of in-process sensorsp. 369
8.9 Basic sensor classification and new sensing technologiesp. 372
8.9.1 Introductionp. 372
8.9.2 Basic sensor typesp. 377
8.9.2.1 Mechanical sensorsp. 377
8.9.2.2 Thermal sensorsp. 380
8.9.2.3 Electrical sensorsp. 382
8.9.2.4 Magnetic sensorsp. 382
8.9.2.5 Radiant sensorsp. 383
8.9.2.6 Chemical sensorsp. 383
8.10 Applications of sensors in precision manufacturingp. 384
8.10.1 AE-based monitoring of grinding wheel dressingp. 384
8.10.1.1 Fast AE RMS analysis for wheel condition monitoringp. 385
8.10.1.2 Grinding wheel topographical mappingp. 387
8.10.1.3 Wheel wear mechanismp. 389
8.10.1.4 AE-based monitoring of face millingp. 390
8.10.2 AE-based monitoring of chemical mechanical planarizationp. 393
8.10.2.1 Monitoring of abrasive process parametersp. 395
8.10.2.2 Precision scribing of CMP-treated wafersp. 398
8.10.2.3 AE-based endpoint detection for CMPp. 401
8.10.2.4 AE monitoring of surface chemical reactions for copper CMPp. 403
8.10.2.5 AE characteristics of oxidation and dissolution in copper CMPp. 411
8.10.2.6 Monitoring of precision scribingp. 416
8.10.2.7 Monitoring of ultraprecision Turning of Single crystal copperp. 418
8.10.2.8 Monitoring of ultraprecision turning of polycrystalline copperp. 421
8.11 Summaryp. 422
IX Process planning for precision manufacturingp. 425
9.1 Manufacturing system characteristicsp. 425
9.2 Process planning basicsp. 435
9.3 Process capabilityp. 438
9.3.1 Backgroundp. 438
9.3.2 Process capability definedp. 440
9.4 Cp as a planning metricp. 444
9.5 Legacy-system integration for precision manufacturingp. 451
9.6 Future integration for precision manufacturing process planningp. 452
X Precision machining processesp. 455
10.1 Introductionp. 455
10.2 Influence of machining parameters, work material, and tool geometryp. 462
10.2.1 Influence of uncut chip thicknessp. 462
10.2.2 Machining brittle materialsp. 465
10.2.3 Effects of work material crystallography/directionalityp. 472
10.3 Process operating conditionsp. 478
10.4 Precision mfg. processes-diamond turning/millingp. 482
10.4.1 Introductionp. 482
10.4.2 Machine tool designp. 484
10.4.3 Tool design and alignmentp. 491
10.4.4 Chip formation and process mechanicsp. 496
10.5 Abrasive processes - fixed and loosep. 505
10.5.1 Fixed abrasive processesp. 505
10.5.1.1 Material removal mechanismsp. 505
10.5.1.2 Grinding forces, power and specific energyp. 512
10.5.1.3 Grinding stiffness, contact stiffness and process time constantp. 517
10.5.1.4 Nanogrindingp. 520
10.5.2 Loose abrasive processesp. 521
10.5.2.1 Polishing and lappingp. 522
10.5.2.2 Chemical mechanical planarization (CMP)p. 532
10.5.2.3 Process modeling in CMPp. 540
10.6 Non-traditional processesp. 551
XI Precision manufacturing applications and challengesp. 555
11.1 Introductionp. 555
11.2 Basic semiconductor device manufacturingp. 559
11.2.1 Introductionp. 559
11.2.2 So, what are they anyway and how are they made?p. 561
11.2.2.1 Microfabrication: background and overviewp. 561
11.2.2.2 Lithographyp. 564
11.3 Applications of semiconductor manufacturing - MEMSp. 570
11.4 Nanotechnologyp. 572
11.4.1 Background and definitionsp. 572
11.4.2 Nanostructured materialsp. 576
11.4.3 Nanofabrication techniquesp. 578
11.4.3.1 E-beam and nano-imprint Fabricationp. 582
11.4.3.2 Epitaxy and strain engineeringp. 585
11.4.3.2.1 Quantum structure nanofabrication using epitaxy on patterned substratesp. 585
11.4.3.2.2 Quantum structure nanofabrication using strain-induced self-assemblyp. 587
11.4.3.3 Scanned probe techniquesp. 589
11.4.4 Self-assemblyp. 595
11.5 MEMS and nanotechnology applicationsp. 600
11.5.1 Nanotechnology applicationsp. 601
11.6 Micro-machining and small scale defectsp. 604
11.6.1 Introductionp. 604
11.6.2 Surface and edge finishp. 607
11.6.3 Modelingp. 611
11.6.3.1 Finite element modelingp. 613
11.6.3.2 Molecular dynamicsp. 615
11.6.3.3 Multiscale modelingp. 619
11.6.3.4 Mechanistic modelingp. 620
11.6.4 Workpiece and design issuesp. 622
11.6.4.1 Micromoldingp. 622
11.6.4.2 Creation of micropattern and microstructurep. 625
11.6.4.3 Creation of 3-dimensional shapesp. 630
11.6.4.4 Ultrasonic vibration assisted micromachiningp. 631
11.6.5 Micro-toolsp. 633
11.6.6 Cutting fluidp. 638
11.6.7 Metrology in micromachiningp. 640
11.6.8 Conclusion and outlookp. 644
11.7 Burrs - preventing and minimizing burr formation in precision componentsp. 646
11.7.1 Introduction and backgroundp. 647
11.7.2 Process-based solutionsp. 651
11.7.2.1 Millingp. 652
11.7.2.2 Drillingp. 654
11.7.3 Examples of application of burr minimization strategiesp. 657
11.7.3.1 Tool path planning in millingp. 657
11.7.3.2 Burr control chartp. 660
11.7.3.3 Integrated process planning and burr minimizationp. 661
11.7.4 Summary and conclusionsp. 662
XII Future of precision manufacturingp. 665
12.1 Introductionp. 665
12.2 The manufacturing pipelinep. 666
12.3 Sustainable design/environmentally conscious design and manufacturingp. 669
12.3.1 Technologies for sustainable manufacturingp. 670
12.3.2 Green manufacturing pipelinep. 671
12.3.3 Sustainable manufacturing or ""does green = sustainable?""p. 676
12.3.4 Manufacturing technology wedgesp. 678
12.3.5 Examples of wedge technology application areas for manufacturingp. 680
12.3.5.1 Consumable use in machiningp. 681
12.3.5.2 Energy use in nanoscale manufacturingp. 685
12.4 Environmentally conscious design of precision machinesp. 693
12.4.1 Sustainability budgetsp. 694
12.4.2 Constructing the sustainability budgetp. 696
12.5 Summary comments/conclusionp. 701
Referencesp. 705
Indexp. 765