Cover image for Sensors and actuators : control cystem instrumentation
Title:
Sensors and actuators : control cystem instrumentation
Personal Author:
Publication Information:
Boca Raton, FL : CRC, 2007
ISBN:
9781420044836

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
PSZ JB 30000010133197 TJ213 D474 2007 Open Access Book
Searching...
PSZ JB 30000010225455 TJ213 D474 2007 Open Access Book
Searching...
PSZ KL 30000010209892 TJ213 D474 2007 Open Access Book Book
Searching...
PSZ KL 30000010149664 TJ213 D474 2007 Open Access Book
Searching...
SPACE KL Main Library 30000010117131 TJ213 D474 2007 Book Book
Searching...
SPACE Pahang Library 30000010117130 TJ213 D474 2007 Book Book
Searching...

On Order

Summary

Summary

Control systems are found in a wide variety of areas, including chemical processing, aerospace, manufacturing, and automotive engineering. Beyond the controller, sensors and actuators are the most important components of the control system, and students, regardless of their chosen engineering field, need to understand the fundamentals of how these components work, how to properly select them, and how to integrate them into an overall system.

In Sensors and Actuators: Control System Instrumentation, bestselling author and expert Clarence de Silva outlines the fundamentals, analytical concepts, modeling and design issues, technical details, and practical applications of these devices. This text begins with a general introduction to control and various types of control systems, followed by component interconnection, signal conditioning, and performance specification and analysis. The author then systematically describes important types, characteristics, and operating principles of analog sensors, digital transducers, stepper motors, continuous-drive actuators, and mechanical transmission components, progressing from basic to more advanced concepts. Throughout the book, convenient snapshot windows summarize important and advanced theory and concepts, accompanied by numerous examples, exercises, case studies, and end-of-chapter problems.

Ideally suited to both senior undergraduate and first-year graduate courses, Sensors and Actuators: Control System Instrumentation builds a firm foundation for future work in control and can be easily followed by students from almost any engineering discipline.


Table of Contents

1 Control, Instrumentation, and Designp. 1
1.1 Introductionp. 1
1.2 Control Engineeringp. 2
1.2.1 Instrumentation and Designp. 4
1.2.2 Modeling and Designp. 5
1.3 Control System Architecturesp. 6
1.3.1 Feedback Control with PID Actionp. 7
1.3.2 Digital Controlp. 8
1.3.3 Feed-Forward Controlp. 10
1.3.4 Programmable Logic Controllersp. 11
1.3.4.1 PLC Hardwarep. 13
1.3.5 Distributed Controlp. 15
1.3.5.1 A Networked Applicationp. 15
1.3.6 Hierarchical Controlp. 17
1.4 Organization of the Bookp. 19
Problemsp. 21
2 Component Interconnection and Signal Conditioningp. 27
2.1 Component Interconnectionp. 28
2.2 Impedance Characteristicsp. 28
2.2.1 Cascade Connection of Devicesp. 29
2.2.2 Impedance Matchingp. 33
2.2.3 Impedance Matching in Mechanical Systemsp. 34
2.3 Amplifiersp. 37
2.3.1 Operational Amplifierp. 38
2.3.1.1 Use of Feedback in Op-Ampsp. 41
2.3.2 Voltage, Current, and Power Amplifiersp. 42
2.3.3 Instrumentation Amplifiersp. 44
2.3.3.1 Differential Amplifierp. 44
2.3.3.2 Common Modep. 46
2.3.4 Amplifier Performance Ratingsp. 47
2.3.4.1 Common-Mode Rejection Ratiop. 49
2.3.4.2 AC-Coupled Amplifiersp. 51
2.3.5 Ground-Loop Noisep. 51
2.4 Analog Filtersp. 52
2.4.1 Passive Filters and Active Filtersp. 55
2.4.1.1 Number of Polesp. 56
2.4.2 Low-Pass Filtersp. 56
2.4.2.1 Low-Pass Butterworth Filterp. 59
2.4.3 High-Pass Filtersp. 61
2.4.4 Band-Pass Filtersp. 63
2.4.4.1 Resonance-Type Band-Pass Filtersp. 64
2.4.5 Band-Reject Filtersp. 67
2.5 Modulators and Demodulatorsp. 69
2.5.1 Amplitude Modulationp. 73
2.5.1.1 Modulation Theoremp. 73
2.5.1.2 Side Frequencies and Side Bandsp. 75
2.5.2 Application of Amplitude Modulationp. 75
2.5.2.1 Fault Detection and Diagnosisp. 76
2.5.3 Demodulationp. 77
2.6 Analog-Digital Conversionp. 78
2.6.1 Digital to Analog Conversionp. 81
2.6.1.1 Weighted Resistor DACp. 81
2.6.1.2 Ladder DACp. 83
2.6.1.3 DAC Error Sourcesp. 85
2.6.2 Analog to Digital Conversionp. 86
2.6.2.1 Successive Approximation ADCp. 87
2.6.2.2 Dual-Slope ADCp. 88
2.6.2.3 Counter ADCp. 91
2.6.2.4 ADC Performance Characteristicsp. 92
2.7 Sample-and-Hold Circuitryp. 94
2.8 Multiplexersp. 96
2.8.1 Analog Multiplexersp. 96
2.8.2 Digital Multiplexersp. 98
2.9 Digital Filtersp. 99
2.9.1 Software Implementation and Hardware Implementationp. 99
2.10 Bridge Circuitsp. 100
2.10.1 Wheatstone Bridgep. 101
2.10.2 Constant-Current Bridgep. 103
2.10.3 Hardware Linearization of Bridge Outputsp. 105
2.10.4 Bridge Amplifiersp. 105
2.10.5 Half-Bridge Circuitsp. 105
2.10.6 Impedance Bridgesp. 107
2.10.6.1 Owen Bridgep. 108
2.10.6.2 Wien-Bridge Oscillatorp. 109
2.11 Linearizing Devicesp. 110
2.11.1 Linearization by Softwarep. 112
2.11.2 Linearization by Hardware Logicp. 113
2.11.3 Analog Linearizing Circuitryp. 114
2.11.4 Offsetting Circuitryp. 115
2.11.5 Proportional-Output Circuitryp. 116
2.11.6 Curve-Shaping Circuitryp. 118
2.12 Miscellaneous Signal-Modification Circuitryp. 119
2.12.1 Phase Shiftersp. 119
2.12.2 Voltage-to-Frequency Convertersp. 121
2.12.3 Frequency-to-Voltage Converterp. 123
2.12.4 Voltage-to-Current Converterp. 124
2.12.5 Peak-Hold Circuitsp. 125
2.13 Signal Analyzers and Display Devicesp. 127
2.13.1 Signal Analyzersp. 128
2.13.2 Oscilloscopesp. 129
2.13.2.1 Triggeringp. 129
2.13.2.2 Lissajous Patternsp. 130
2.13.2.3 Digital Oscilloscopesp. 132
Problemsp. 133
3 Performance Specification and Analysisp. 145
3.1 Parameters for Performance Specificationp. 145
3.1.1 Perfect Measurement Devicep. 146
3.2 Time-Domain Specificationsp. 146
3.2.1 Rise Timep. 146
3.2.2 Delay Timep. 147
3.2.3 Peak Timep. 147
3.2.4 Settling Timep. 147
3.2.5 Percentage Overshootp. 147
3.2.6 Steady-State Errorp. 148
3.2.7 Simple Oscillator Modelp. 148
3.2.8 Stability and Speed of Responsep. 150
3.3 Frequency-Domain Specificationsp. 151
3.3.1 Gain Margin and Phase Marginp. 153
3.3.2 Simple Oscillator Modelp. 154
3.4 Linearityp. 155
3.4.1 Saturationp. 155
3.4.2 Dead Zonep. 156
3.4.3 Hysteresisp. 156
3.4.4 The Jump Phenomenonp. 157
3.4.5 Limit Cyclesp. 157
3.4.6 Frequency Creationp. 157
3.5 Instrument Ratingsp. 158
3.5.1 Rating Parametersp. 159
3.6 Bandwidth Designp. 161
3.6.1 Bandwidthp. 161
3.6.1.1 Transmission Level of a Band-Pass Filterp. 162
3.6.1.2 Effective Noise Bandwidthp. 162
3.6.1.3 Half-Power (or 3dB) Bandwidthp. 163
3.6.1.4 Fourier Analysis Bandwidthp. 163
3.6.1.5 Useful Frequency Rangep. 164
3.6.1.6 Instrument Bandwidthp. 164
3.6.1.7 Control Bandwidthp. 165
3.6.2 Static Gainp. 165
3.7 Aliasing Distortion due to Signal Samplingp. 170
3.7.1 Sampling Theoremp. 170
3.7.2 Antialiasing Filterp. 171
3.7.3 Another Illustration of Aliasingp. 174
3.8 Bandwidth Design of a Control Systemp. 177
3.8.1 Comment about Control Cycle Timep. 178
3.9 Instrument Error Analysisp. 179
3.9.1 Statistical Representationp. 179
3.9.2 Accuracy and Precisionp. 180
3.9.3 Error Combinationp. 181
3.9.3.1 Absolute Errorp. 182
3.9.3.2 SRSS Errorp. 182
3.10 Statistical Process Controlp. 189
3.10.1 Control Limits or Action Linesp. 190
3.10.2 Steps of SPCp. 190
Problemsp. 191
4 Analog Sensors and Transducersp. 207
4.1 Terminologyp. 207
4.1.1 Motion Transducersp. 209
4.2 Potentiometerp. 211
4.2.1 Rotatory Potentiometersp. 212
4.2.1.1 Loading Nonlinearityp. 212
4.2.2 Performance Considerationsp. 214
4.2.3 Optical Potentiometerp. 218
4.3 Variable-Inductance Transducersp. 220
4.3.1 Mutual-Induction Transducersp. 221
4.3.2 Linear-Variable Differential Transformer/Transducerp. 222
4.3.2.1 Phase Shift and Null Voltagep. 222
4.3.2.2 Signal Conditioningp. 226
4.3.3 Rotatory-Variable Differential Transformer/Transducerp. 230
4.3.4 Mutual-Induction Proximity Sensorp. 232
4.3.5 Resolverp. 233
4.3.5.1 Demodulationp. 234
4.3.5.2 Resolver with Rotor Outputp. 234
4.3.6 Synchro Transformerp. 235
4.3.7 Self-Induction Transducersp. 237
4.4 Permanent-Magnet Transducersp. 238
4.4.1 DC Tachometerp. 238
4.4.1.1 Electronic Commutationp. 239
4.4.1.2 Modeling and Design Examplep. 239
4.4.1.3 Loading Considerationsp. 242
4.4.2 Permanent-Magnet AC Tachometerp. 242
4.4.3 AC Induction Tachometerp. 243
4.4.4 Eddy Current Transducersp. 244
4.5 Variable-Capacitance Transducersp. 246
4.5.1 Capacitive Rotation Sensorp. 246
4.5.2 Capacitive Displacement Sensorp. 247
4.5.3 Capacitive Angular Velocity Sensorp. 250
4.5.4 Capacitance Bridge Circuitp. 250
4.5.5 Differential (Push-PuU) Displacement Sensorp. 252
4.6 Piezoelectric Sensorsp. 253
4.6.1 Sensitivityp. 254
4.6.2 Accelerometersp. 255
4.6.3 Piezoelectric Accelerometerp. 255
4.6.4 Charge Amplifierp. 257
4.7 Effort Sensorsp. 260
4.7.1 Force Causality Issuesp. 261
4.7.1.1 Force-Motion Causalityp. 261
4.7.1.2 Physical Realizabilityp. 263
4.7.2 Force Control Problemsp. 266
4.7.2.1 Force Feedback Controlp. 266
4.7.2.2 Feedforward Force Controlp. 266
4.7.3 Impedance Controlp. 269
4.7.4 Force Sensor Locationp. 272
4.8 Strain Gagesp. 273
4.8.1 Equations for Strain-Gage Measurementsp. 273
4.8.1.1 Bridge Sensitivityp. 276
4.8.1.2 The Bridge Constantp. 277
4.8.1.3 The Calibration Constantp. 279
4.8.1.4 Data Acquisitionp. 282
4.8.1.5 Accuracy Considerationsp. 282
4.8.2 Semiconductor Strain Gagesp. 283
4.8.3 Automatic (Self) Compensation for Temperaturep. 287
4.9 Torque Sensorsp. 289
4.9.1 Strain-Gage Torque Sensorsp. 290
4.9.2 Design Considerationsp. 292
4.9.2.1 Strain Capacity of the Gagep. 295
4.9.2.2 Strain-Gage Nonlinearity Limitp. 295
4.9.2.3 Sensitivity Requirementp. 296
4.9.2.4 Stiffness Requirementp. 296
4.9.3 Deflection Torque Sensorsp. 301
4.9.3.1 Direct-Deflection Torque Sensorp. 301
4.9.3.2 Variable-Reluctance Torque Sensorp. 303
4.9.4 Reaction Torque Sensorsp. 303
4.9.5 Motor Current Torque Sensorsp. 305
4.9.6 Force Sensorsp. 307
4.10 Tactile Sensingp. 307
4.10.1 Tactile Sensor Requirementsp. 309
4.10.2 Construction and Operation of Tactile Sensorsp. 310
4.10.3 Optical Tactile Sensorsp. 312
4.10.4 Piezoresistive Tactile Sensorsp. 314
4.10.5 Dexterityp. 315
4.10.6 A Strain-Gage Tactile Sensorp. 315
4.10.7 Other Types of Tactile Sensorsp. 317
4.10.8 Passive Compliancep. 317
4.11 Gyroscopic Sensorsp. 318
4.11.1 Rate Gyrop. 319
4.11.2 Coriolis Force Devicesp. 320
4.12 Optical Sensors and Lasersp. 320
4.12.1 Fiber-Optic Position Sensorp. 321
4.12.2 Laser Interferometerp. 322
4.12.3 Fiber-Optic Gyroscopep. 323
4.12.4 Laser Doppler Interferometerp. 324
4.13 Ultrasonic Sensorsp. 326
4.13.1 Magnetostrictive Displacement Sensorsp. 327
4.14 Thermofluid Sensorsp. 328
4.14.1 Pressure Sensorsp. 328
4.14.2 Flow Sensorsp. 329
4.14.3 Temperature Sensorsp. 332
4.14.3.1 Thermocouplep. 332
4.14.3.2 Resistance Temperature Detectorp. 333
4.14.3.3 Thermistorp. 333
4.14.3.4 Bi-Metal Strip Thermometerp. 334
4.15 Other Types of Sensorsp. 334
Problemsp. 335
5 Digital Transducersp. 357
5.1 Advantages of Digital Transducersp. 357
5.2 Shaft Encodersp. 359
5.2.1 Encoder Typesp. 359
5.3 Incremental Optical Encodersp. 363
5.3.1 Direction of Rotationp. 364
5.3.2 Hardware Featuresp. 365
5.3.3 Displacement Measurementp. 366
5.3.3.1 Digital Resolutionp. 367
5.3.3.2 Physical Resolutionp. 368
5.3.3.3 Step-Up Gearingp. 369
5.3.3.4 Interpolationp. 371
5.3.4 Velocity Measurementp. 371
5.3.4.1 Velocity Resolutionp. 372
5.3.4.2 Step-Up Gearingp. 374
5.3.5 Data Acquisition Hardwarep. 375
5.4 Absolute Optical Encodersp. 377
5.4.1 Gray Codingp. 377
5.4.1.1 Code Conversion Logicp. 378
5.4.2 Resolutionp. 379
5.4.3 Velocity Measurementp. 380
5.4.4 Advantages and Drawbacksp. 380
5.5 Encoder Errorp. 381
5.5.1 Eccentricity Errorp. 382
5.6 Miscellaneous Digital Transducersp. 385
5.6.1 Digital Resolversp. 385
5.6.2 Digital Tachometersp. 387
5.6.3 Hall-Effect Sensorsp. 388
5.6.4 Linear Encodersp. 389
5.6.5 Moire Fringe Displacement Sensorsp. 390
5.6.6 Cable Extension Sensorsp. 393
5.6.7 Binary Transducersp. 394
Problemsp. 396
6 Stepper Motorsp. 405
6.1 Principle of Operationp. 405
6.1.1 Permanent-Magnet (PM) Stepper Motorp. 406
6.1.2 Variable-Reluctance (VR) Stepper Motorp. 409
6.1.3 Polarity Reversalp. 409
6.2 Stepper Motor Classificationp. 411
6.2.1 Single-Stack Stepper Motorsp. 413
6.2.2 Toothed-Pole Constructionp. 416
6.2.3 Another Toothed Constructionp. 419
6.2.4 Microsteppingp. 421
6.2.5 Multiple-Stack Stepper Motorsp. 422
6.2.5.1 Equal-Pitch Multiple-Stack Stepperp. 423
6.2.5.2 Unequal-Pitch Multiple-Stack Stepperp. 424
6.2.6 Hybrid Stepper Motorp. 425
6.3 Driver and Controllerp. 426
6.3.1 Driver Hardwarep. 428
6.3.2 Motor Time Constantp. 430
6.4 Torque Motion Characteristicsp. 432
6.4.1 Static Position Errorp. 438
6.5 Damping of Stepper Motorsp. 439
6.5.1 Mechanical Dampingp. 440
6.5.2 Electronic Dampingp. 443
6.5.3 Multiple Phase Energizationp. 446
6.6 Stepping Motor Modelsp. 446
6.6.1 A Simplified Modelp. 447
6.6.2 An Improved Modelp. 448
6.6.2.1 Torque Equation for PM and HB Motorsp. 449
6.6.2.2 Torque Equation for VR Motorsp. 449
6.7 Control of Stepper Motorsp. 450
6.7.1 Pulse Missingp. 450
6.7.2 Feedback Controlp. 452
6.7.3 Torque Control through Switchingp. 454
6.7.4 Model-Based Feedback Controlp. 455
6.8 Stepper Motor Selection and Applicationsp. 456
6.8.1 Torque Characteristics and Terminologyp. 456
6.8.2 Stepper Motor Selectionp. 458
6.8.2.1 Positioning (x-y) Tablesp. 459
6.8.3 Stepper Motor Applicationsp. 466
Problemsp. 468
7 Continuous-Drive Actuatorsp. 487
7.1 DC Motorsp. 488
7.1.1 Rotor and Statorp. 489
7.1.2 Commutationp. 491
7.1.3 Static Torque Characteristicsp. 491
7.1.4 Brushless DC Motorsp. 493
7.1.4.1 Constant-Speed Operationp. 495
7.1.4.2 Transient Operationp. 495
7.1.5 Torque Motorsp. 497
7.2 DC Motor Equationsp. 498
7.2.1 Steady-State Characteristicsp. 499
7.2.1.1 Bearing Frictionp. 500
7.2.1.2 Output Powerp. 502
7.2.1.3 Combined Excitation of Motor Windingsp. 503
7.2.1.4 Speed Regulationp. 504
7.2.2 Experimental Modelp. 508
7.2.2.1 Electrical Damping Constantp. 508
7.2.2.2 Linearized Experimental Modelp. 508
7.3 Control of DC Motorsp. 511
7.3.1 DC Servomotorsp. 512
7.3.2 Armature Controlp. 514
7.3.2.1 Motor Time Constantsp. 515
7.3.2.2 Motor Parameter Measurementp. 516
7.3.3 Field Controlp. 522
7.3.4 Feedback Control of DC Motorsp. 523
7.3.4.1 Velocity Feedback Controlp. 524
7.3.4.2 Position Plus Velocity Feedback Controlp. 524
7.3.4.3 Position Feedback with Proportional, Integral, and Derivative Controlp. 525
7.3.5 Phase-Locked Controlp. 526
7.4 Motor Driverp. 528
7.4.1 Interface Cardp. 529
7.4.2 Drive Unitp. 529
7.4.3 Pulse-Width Modulationp. 530
7.5 DC Motor Selectionp. 537
7.5.1 Motor Data and Specificationsp. 537
7.5.2 Selection Considerationsp. 538
7.5.3 Motor Sizing Procedurep. 541
7.5.3.1 Inertia Matchingp. 541
7.5.3.2 Drive Amplifier Selectionp. 542
7.6 Induction Motorsp. 543
7.6.1 Rotating Magnetic Fieldp. 544
7.6.2 Induction Motor Characteristicsp. 548
7.6.3 Torque-Speed Relationshipp. 550
7.7 Induction Motor Controlp. 553
7.7.1 Excitation Frequency Controlp. 554
7.7.2 Voltage Controlp. 556
7.7.3 Rotor Resistance Controlp. 559
7.7.4 Pole-Changing Controlp. 560
7.7.5 Field Feedback Control (Flux Vector Drive)p. 561
7.7.6 A Transfer-Function Model for an Induction Motorp. 561
7.7.7 Single-Phase AC Motorsp. 566
7.8 Synchronous Motorsp. 567
7.8.1 Control of a Synchronous Motorp. 568
7.9 Linear Actuatorsp. 569
7.9.1 Solenoidp. 569
7.9.2 Linear Motorsp. 570
7.10 Hydraulic Actuatorsp. 571
7.10.1 Components of a Hydraulic Control Systemp. 572
7.10.2 Hydraulic Pumps and Motorsp. 574
7.10.3 Hydraulic Valvesp. 577
7.10.3.1 Spool Valvep. 578
7.10.3.2 Steady-State Valve Characteristicsp. 581
7.10.4 Hydraulic Primary Actuatorsp. 582
7.10.5 Load Equationp. 584
7.11 Hydraulic Control Systemsp. 585
7.11.1 Feedback Controlp. 591
7.11.2 Constant-Flow Systemsp. 596
7.11.3 Pump-Controlled Hydraulic Actuatorsp. 597
7.11.4 Hydraulic Accumulatorsp. 597
7.11.5 Pneumatic Control Systemsp. 598
7.11.6 Flapper Valvesp. 598
7.11.7 Hydraulic Circuitsp. 601
7.12 Fluidicsp. 602
7.12.1 Fluidic Componentsp. 603
7.12.1.1 Logic Componentsp. 603
7.12.1.2 Fluidic Motion Sensorsp. 604
7.12.1.3 Fluidic Amplifiersp. 605
7.12.2 Fluidic Control Systemsp. 606
7.12.2.1 Interfacing Considerationsp. 606
7.12.2.2 Modular Laminated Constructionp. 606
7.12.3 Applications of Fluidicsp. 607
Problemsp. 607
8 Mechanical Transmission Componentsp. 625
8.1 Mechanical Componentsp. 625
8.2 Transmission Componentsp. 627
8.3 Lead Screw and Nutp. 628
8.4 Harmonic Drivesp. 632
8.5 Continuously Variable Transmissionp. 637
8.5.1 Principle of Operationp. 637
8.5.2 Two-Slider CVTp. 639
8.5.3 A Three-Slider CVTp. 640
Problemsp. 642
Bibliography and Further Readingp. 647
Answers to Numerical Problemsp. 653
Indexp. 655